Detecting binocular 3D motion in static 3D noise: no effect of viewing distance.
نویسندگان
چکیده
Relative binocular disparity cannot tell us the absolute 3D shape of an object, nor the 3D trajectory of its motion, unless the visual system has independent access to how far away the object is at any moment. Indeed, as the viewing distance is changed, the same disparate retinal motions will correspond to very different real 3D trajectories. In this paper we were interested in whether binocular 3D motion detection is affected by viewing distance. A visual search task was used, in which the observer is asked to detect a target dot, moving in 3D, amidst 3D stationary distractor dots. We found that distance does not affect detection performance. Motion-in-depth is consistently harder to detect than the equivalent lateral motion, for all viewing distances. For a constant retinal motion with both lateral and motion-in-depth components, detection performance is constant despite variations in viewing distance that produce large changes in the direction of the 3D trajectory. We conclude that binocular 3D motion detection relies on retinal, not absolute, visual signals.
منابع مشابه
Real 3D increases perceived depth over anaglyphs but does not cancel stereo-anomaly
Background: About 30% of the population has difficulties detecting the sign and the magnitude of binocular disparity in the absence of eye movements, a phenomenon called stereo-anomaly. The stereo-anomaly tests so far are based on disparity only (e.g. red–green stereograms), which means that other depth cues cannot be used and even provide conflicting depth information. Objective: Here we inves...
متن کاملTesting Probabilistic Models of Binocular 3d Motion Perception
Geometric constraints for the perception of three-dimensional (3D) binocular motion are discussed in a probabilistic framework. Two alternative Bayesian models of binocular integration are put forward to explain perceptual bias under uncertainty. The models exploit biologically plausible constraints of local motion and disparity processing in a binocular viewing geometry. Results from computer ...
متن کاملDetection of 3D curved trajectories: the role of binocular disparity
We examined the ability of observers to detect the 3D curvature of motion paths when binocular disparity and motion information were present. On each trial, two displays were observed through shutter-glasses. In one display, a sphere moved along a linear path in the horizontal and depth dimensions. In the other display, the sphere moved from the same starting position to the same ending positio...
متن کاملDepth interval estimates from motion parallax and binocular disparity beyond interaction space.
Static and dynamic observers provided binocular and monocular estimates of the depths between real objects lying well beyond interaction space. On each trial, pairs of LEDs were presented inside a dark railway tunnel. The nearest LED was always 40 m from the observer, with the depth separation between LED pairs ranging from 0 up to 248 m. Dynamic binocular viewing was found to produce the great...
متن کاملInteraction between the perceived shape of two objects
The difference between the way in which binocular disparity scales with viewing distance and the way in which motion parallax scales with viewing distance introduces a potential indirect cue for viewing distance: the viewing distance is the only distance at which disparity and motion specify the same depth. The present study examines whether this information is used. Two simulated ellipsoids we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Spatial vision
دوره 14 1 شماره
صفحات -
تاریخ انتشار 2000